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Abstract
We investigate the decoherence of a charge qubit in a double quantum dot which is formed in a
free-standing semiconductor slab. The dots are spatially arranged to align along a particular
direction. Confined phonons in the slab have a remarkable influence on the dynamics of a qubit
system. We show that the decoherence of such a qubit strongly depends on the positions of the
dots. By varying the tunnel coupling, the decoherence differs significantly in laterally and
vertically coupled quantum dots. A robust qubit is further achieved due to suppression of
electron–phonon coupling. Moreover, the coherent evolution of the system is analyzed by
modulating the interdot direction.

1. Introduction

Understanding and controlling the behavior of electrons in
nanostructures leads to an entirely new class of devices, such
as the sensors and electronics ranging from photon detectors to
quantum computers [1–4]. Nanostructured devices possess a
significant advantage of direct controllability with the help of
external voltages [5, 6]. For quantum computation, a double
quantum dot is proposed to realize a functional quantum bit
(qubit). Correspondingly, a two-level quantum system is
established by employing charge degrees of freedom [7–9].
The locations of the electron in the dots subsequently represent
two logical states of the qubit. In such a device, quantum
superpositions in double quantum dots can be coherently
controlled in terms of the charge states [7–9].

Since semiconductor quantum dots are solid-state struc-
tures, the operations of qubits are strongly limited by the de-
coherence which is induced by couplings to the environment.
The electron–phonon interaction is one of the major sources
of decoherence [10–13]. In the context of qubit realization,
some functions of double dot qubits have been demonstrated
in recent experiments [7–9]. Extensive theoretical works are
devoted to single [14–18] and coupled qubits [19, 20] which
are perturbed by bulk baths. In this work, we aim to search
for ways to extend the decoherence time if the quantum dots

are placed in a specific environment. For a charge qubit, it
is expected that the decoherence time is extended by means
of reducing the electron–phonon coupling. With the advance
of nanotechnology, the ability to design geometries opens up
a number of interesting possibilities, i.e. the electron–phonon
coupling can be engineered at the origin. Unlike bulk cases, the
engineered structure supports the tailoring effect of the phonon
density of states by altering the dimensions [21–25]. There-
fore, a charge qubit in the engineered structure is expected to
reveal interesting properties.

In this paper, we investigate the decoherence of a double
dot qubit which is embedded in a free-standing semiconductor
slab. An electron in this qubit interacts with the confined
phonons in the slab. The dots are oriented along a particular
direction with respect to the surface of the slab. Then the
dominant decoherence contributor can be tuned by orienting
the dot structure. With the master equation, we analyze the
dynamics of the qubit in the Born–Markov approximation. A
high-quality qubit is obtained by varying the tunnel detuning.
Two distinct tendencies are exhibited in the laterally and
vertically coupled dots. It is observed that the decoherence
of a qubit strongly depends on the interdot orientation.
Furthermore, in the slab system, inhibition of the electron–
phonon coupling can be achieved, leading to a robust qubit.
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2. Model and method

A scheme of our model is depicted in figure 1. A qubit consists
of two coupled quantum dots embedded in a free-standing
semiconductor slab. Most of the structure is spatially separated
from most of the substrate [26, 27]. The in-plane scale of
the slab is assumed to substantially exceed the width w and
the dot size a. This assumption ensures that the effect of the
contacts with the substrate can be neglected in the system. The
quantum dots are spatially oriented along a certain direction.
The interdot distance and angle are d and �, respectively. We
assume that only one additional electron is allowed to exist on
either the left or the right dot in the Coulomb blockade regime.
The effective Hilbert space of the electronic system can be
defined by the basis states: |L〉 for one excess electron in the
left dot and |R〉 for one excess electron in the right dot [10].
To study the decoherence of a free-standing qubit, the total
Hamiltonian can then be expressed as

H = He + Hp + Hep, (1)

with
He = ε

2
σz + Tcσx , (2)

Hp =
∑

q‖
�ωq‖b

†
q‖bq‖, (3)

Hep = σz

2

∑

q‖
Mq‖ (b

†
q‖ + b−q‖), (4)

where He is the electron Hamiltonian, Hp is the phonon bath
and Hep is the electron–phonon interaction in the slab. The
Pauli matrices σx and σz denote |L〉〈R|+ |R〉〈L| and |L〉〈L|−
|R〉〈R|, respectively. ε is the electron energy difference and
Tc is the tunnel coupling between the charge states |L〉 and
|R〉. In experiments, the parameters ε and Tc can be controlled
through the external gate voltages [7–9]. ωq‖ and b†

q‖ (bq‖)

are the frequency and creation (annihilation) operator of the
phonons with the in-plane wavevector q‖. In addition, Mq‖
denotes the coupling element of electrons to phonons in the
slab. Note that, in our model, Tc is assumed to be nonzero so
that the electron is allowed to tunnel back and forth between
two dots. During the evolution of the qubit, the populations
of the states will be damped with time, leading to a relaxation
dynamics, i.e. we do not consider the pure dephasing case.

For confined phonons, the dispersion relation can be
derived from the elastic continuum model [28]. Different
phonon modes in the slab are subsequently defined by applying
the second quantization formalism [29, 30]. One can obtain
the phonon frequency through numerical treatment. There
are infinitely many branches for each in-plane component q‖.
For the free-standing slab, the importance of the piezoelectric
potential and deformation potential is obviously different from
that for bulk systems [10, 11]. The ratio of the piezoelectric
potential strength to the deformation potential strength is equal
to (ee14/Eaq)2, where e denotes the electron charge, e14 is
the piezoelectric constant, Ea is the deformation potential
constant, and q is the phonon wavevector. For long-wavelength
phonons, the piezoelectric interaction is the dominant term
in bulk systems. For a slab, however, a lower bound

Figure 1. Schematic illustration of a double dot qubit embedded in a
free-standing slab with a width w. The radius of the dots is a and the
surfaces of the slab are z = ±w/2. The dots are arranged to orient in
a particular direction, corresponding to an angle � with respect to the
x direction. The position vectors of the left and the right dots are
RL = −d/2 and RR = d/2, respectively.

for the wavelength is obtained due to the confinement in
geometry. This fact cuts off small phonon momenta that
determine the strength of the piezoelectric coupling. Based
on this argument, the deformation potential prevails over the
piezoelectric potential in the slab system [30–32]. To explain
the main feature of our model, the deformation potential is
supposed to be the main contributor. Consequently, there are
two relevant acoustic modes: dilatational waves and flexural
waves. On the contrary, shear waves are neglected because
of their vanishing interaction with the electron [30]. The
dispersion relation for the dilatational waves is described by

ωq‖ = cl

√
q2

‖ + q2
l = ct

√
q2

‖ + q2
t , (5)

where the parameters ql and qt can be determined from the
equation [30]

tan qt d/2

tan qld/2
= − 4q2

‖qlqt

(q2
‖ − q2

t )
2
. (6)

Similarly, for the flexural waves, one can obtain the parameters
ql and qt by solving the equation [30]

tan qld/2

tan qt d/2
= − 4q2

‖qlqt

(q2
‖ − q2

t )
2
, (7)

together with the dispersion relation (equation (5)). For
two waves, the parameters q‖, ql and qt independently
satisfy the dispersion relations. Next, we investigate the
effect of a phonon bath on an electron existing in a double
quantum dot system. An isotropic electron wavefunction
is assumed to be sharply dispersed around the center of
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quantum dot with a Gaussian shape. From the positions
of the dots, the wavefunctions for the two states are
ψL(R)(r) = exp[−|r − RL(R)|2/2a2]/√π3/2a3, where r =
(x, y, z), RL = [−d cos(�)/2, 0,−d sin(�)/2] and RR =
[d cos(�)/2, 0, d sin(�)/2]. As shown in figure 1, the
position of the dot plays a crucial role in the electron–phonon
interaction. For dilatational waves, the coupling element is
formulated by

Mq‖ = λde−(q2‖ +q2
l )a

2/4
(
eiq‖·d/2 − e−iq‖·d/2) , (8)

where the coupling strength is

λd = Fd

√
�E2

a

2Aρωq‖
(q2

t − q2
‖)(q

2
l + q2

‖) sin (qtw/2)

× cos
[
qld sin(�)/2

]
. (9)

In contrast, for flexural waves, the coupling element is
formulated by

Mq‖ = −λfe
−(q2‖ +q2

l )a
2/4

(
eiq‖·d/2 + e−iq‖·d/2) , (10)

with its strength

λf = Ff

√
�E2

a

2Aρωq‖
(q2

t − q2
‖)(q

2
l + q2

‖) cos (qtw/2)

× sin
[
qld sin(�)/2

]
. (11)

Here, A is the area of the slab, ρ is the mass density,
and Fd (Ff) is the normalization constant of the dilatational
(flexural) waves.

A master equation for the system dynamics is now derived
in the standard way [33–35]. The Born–Markov approximation
is performed in our model. In addition, the system and the
phonon bath are assumed to be disentangled at t = 0. Then,
the master equation for the density matrix ρ(t) can be written
as
dρ(t)

dt
= − i

�
[He, ρ(t)] − 1

�2

∫ ∞

0
dt ′[S, S̃(t ′ − t)ρ(t)]

× K (t − t ′)+ 1

�2

∫ ∞

0
dt ′[S, ρ(t)S̃(t ′−t)]K (t ′−t). (12)

Here, S̃ is the interaction picture of the operator S = σz/2 and
the bath correlation function is

K (τ ) =
∫ ∞

0
dωJ (ω)[cos(ωτ) coth(h̄ω/2kBT )−i sin(ωτ)],

(13)
with the Boltzmann constant kB, temperature T , and spectral
density J which is given by

J (ω) =
∑

q‖
|Mq‖ |2δ(ω − ωq‖ ). (14)

In equation (14) the function contains all relevant information
about the environment and the coupling to the electron.
It is worth mentioning that low temperature and the one-
phonon process are considered in our calculations. When the
temperature is high, the two-phonon process is important [36].
However, the effect of the two-phonon process becomes much
weaker than that of the one-phonon process at low temperature.

Accordingly, the higher order processes are neglected in the
model.

We now study the specific case that the electron is initially
prepared in the left dot. When the tunnel coupling is driven,
the electron can resonantly tunnel back and forth between two
dots. According to these conditions (nL (t = 0) = 1 and
ε = 0), one can follow the standard treatment [33–35] to obtain
the population of the left-dot state

nL(t) � 1
2 [1 + e−t/Td cos(ωt)], (15)

where nL denotes the expectation value 〈L|ρ(t)|L〉, the
oscillation frequency is

ω � 2Tc

�
, (16)

and the decoherence time is

Td = 4�
2

π J (2Tc/�) coth(Tc/kBT )
. (17)

Moreover, the population of the right-dot state nR is simply
estimated by 1 − nL . From equation (15), one realizes that two
parameters govern the operation of the qubit. It is evidently
shown that the tunnel coupling determines the oscillation of
the evolution. However, the time-dependent population will be
damped by the decoherence time. Based on two scales, thus,
the quality factor is defined as [16–18]

Q = ωTd

2π
, (18)

which quantifies the stability of the quantum system under the
action of the electron–phonon interaction. In the calculations,
we set a = 25 nm, d = 50 nm, w = 120 nm, and T = 50 mK.
The parameters for GaAs material are ρ = 5.3 × 103 Kg m−3,
Ea = 2.2 × 10−18 J, ct = 3.0 × 103 m s−1, and cl =
5.2 × 103 m s−1 [37].

3. Results and discussion

Figure 2 presents the tunnel coupling dependence of the quality
factor of a qubit prepared in the case of � = 0, i.e. the
dots align along the x direction. The flexural waves do not
contribute any effect to the decoherence. One can find a high-
quality factor in the small Tc regime. The curve decreases
to a minimum with increasing tunnel coupling. Variation
of the quality factor by up to several orders of magnitude
can be tuned in such a system, because of the influence
of spectral density shown in the inset of Figure 2. For
small Tc, the spectral density is relatively small, leading to
a long decoherence time Td. The weak phonon influence
directly enhances the quality factor. Moreover, a remarkable
quality factor (Q → ∞) is found by appropriately varying
the tunnel coupling (Tc ≈ 36.55 μeV). This explicitly
indicates that the quantum coherence stays in the free-
standing qubit for a long time. As shown in the inset,
the long coherence results from a drastic suppression of
J (→ 0) at the value of 73.1 μeV, corresponding to the
ineffective electron–phonon interaction [31, 32]. In a real
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Figure 2. Quality factor Q as a function of tunnel coupling Tc for
� = 0. The inset shows the spectral density of the dilatational
waves.

system, a slab has finite extension. Thus, the electron–phonon
interaction cannot be completely suppressed. We expected that
the singular behavior in quality factor would be smeared out,
but the enhanced feature is still held.

A contrary case is shown in figure 3. Two quantum dots
are assumed to be vertically coupled in the system (� = π/2).
The flexural wave becomes the main contributor due to q‖ ·d =
0. The quality factor presents a diverse behavior. When the
tunnel coupling decreases, the value simultaneously decreases
in the small Tc regime. This tendency differs from the case
of � = 0. From the inset diagram, the spectral density of
flexural waves is high and varies more rapidly with respect to
the tunnel coupling. A fast changing rate of the spectral density
results in the fact that decoherence time becomes dominant
over the oscillation. Furthermore, a cusp is found with the
tunnel coupling. This result reflects that a new additional
subband starts contributing an effect to the spectral density
shown in the inset [31, 32]. We further contrast the magnitudes
of quality factors in two different configurations. Actually, the
value is lower in the vertically coupled system. As shown in
the insets of figures 2 and 3, we compare the two numerical
results to find that the spectral density of flexural waves is
higher than that of dilatational waves and further analyze the
contributing components in detail. For phonon properties, the
flexural waves have a higher density of states at small q‖ [38].
Moreover, the strength of the coupling element |Mq‖ |2 for� =
π/2 can be relatively enhanced due to |eiq‖·d/2−e−iq‖·d/2|2 = 4.
The arrangement of the dots also plays an important role in the
spectral density of flexural waves.

To understand the effect of the spatial arrangement
of quantum dots, in figure 4 we plot the angle-dependent
quality factor for fixing Tc = 20 μeV. The quality factor
gradually decreases with increasing angle �. We analyze
the contribution of decoherence in this confined structure.
When the interdot direction is oriented, the total contribution

Figure 3. Quality factor Q as a function of tunnel coupling Tc for
� = π/2. The inset shows the spectral density of the flexural waves.

Figure 4. Angle dependence of the quality factor for Tc = 20 μ eV.
Inset: spectral density of the dilatational and flexural waves.

consists of two components: dilatational waves and flexural
waves. Both components contribute to the spectral density
to different degrees, strongly depending on the corresponding
angle shown in the inset. For small �, the dilatational waves
govern the decoherence property of the qubit, because the
spectral density of dilatational waves is higher than that of the
flexural waves. As mentioned above, the decoherence time
Td is mainly determined by the contribution of the dilatational
waves. From equations (15) and (18), this result directly affects
the population and quality factor. On the contrary, the influence
of the flexural waves prevails over that of the dilatational waves
in the large � regime. For example, the ratios in spectral
density of dilatational and flexural waves are about 6:1 and
1:354 for the cases of � = 0.05π and 0.45π , respectively.
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Figure 5. Time evolutions of the populations nL (black line) and nR

(red line) for (a)� = 0.1π and (b)� = 0.4π . The tunnel coupling
is Tc = 20 μeV.

(This figure is in colour only in the electronic version)

Therefore, by varying the interdot orientation, the dominant
contribution of the quality factor can be transferred between
two waves.

Figure 5 further shows the dynamics of the qubit in the
cases of different angles�. The value of Tc is fixed at 20 μeV.
The amplitudes of the populations vary slightly in the short-
time regime. For � = 0.1π , the effect of the damping on the
oscillation is observed in the long-time regime (figure 5(a)).
As the angle increases, the damping becomes large and the
amplitude of the population is clearly suppressed as shown
in figure 5(b). We evaluate two systems. It is expected that
the system with � = 0.4π loses coherence faster than the
case with � = 0.1π . To perform enough computational
steps, the free-standing qubit with a small angle operates more
effectively due to the longer decoherence time.

4. Conclusions

In this paper we have reported the decoherence of a
free-standing qubit induced by confined phonons. The
characteristic of the qubit is significantly modified by changing
the tunnel coupling. We also investigated the effect of
spatial arrangement of the dots on the quality of the system.
The calculations showed that the evolution of the quantum
states strongly depends on the interdot direction. With
external control of the related parameters, we are able to
better understand the underlying physics of the decoherence
phenomenon and make a theoretical study of the performance
of a double dot qubit based on a free-standing structure.
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